First Application of Optically Active trans-1,2-Bis(2- aminophenyl) cyclopentane for Asymmetric Reaction: Enantioselective N -Acetylation of Secondary Alkyl Amines

Jin Song YANG $^{1 *}$, Kazuhiro KONDO 2, Yasuoki MURAKAMI ${ }^{2}$ *
Department of Chemistry of Medicinal Natural Products, School of Pharmacy, West China University of Medical Sciences, Chengdu 610041;
${ }^{2}$ School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274, Japan

Abstract

First application of optically active trans-1,2-Bis(2-aminophenyl)cyclopentane 2 for asymmetric reaction, enantioselective N-acetylation of secondary alkyl amines, is described. This acetylation with tetraacetylated $\mathbf{3}$ which was prepared from $\mathbf{2}$, gave the N-acetylamines with up to 21% ee.

Keywords: Chiral, enantioselective N-acetylation.

Optically active amines are essential constituents or building blocks for the synthesis of many medicines. Efficient resolution of racemic amines through enzymatic or nonenzymatic methods plays an important role in the production of chiral amines ${ }^{1}$. The kinetic resolution of amines through nonenzymatic acetylation catalysts has been the focus of our interest. For this purpose, we have developed the first enantioselective N-acetylation reagent 1 (Figure 1), which was derived from 1,1'-binaphthyl-2,2'-diamine, to resolve various amines ${ }^{2}$. This reagent has been proved to provide a moderate level of activity and selectivity which led us to develop other new reagents with higher enantioselectivity.

Figure 1

1

$(S, S)-(-)-2$

$(R, R)-(+)-\mathbf{2}$

Scheme 1

Table 1 Enantioselective N-acetylation of Various Amines with $\mathbf{3}\left(0.25 \mathrm{eq}\right.$.) at room temperature in $\mathrm{DMSO}^{\text {a }}$

Entry ${ }^{\mathrm{b}}$| Starting |
| :---: |
| Amines |

${ }^{\text {a }}$ The reaction was run until $\mathbf{3}$ disappeared. ${ }^{\mathrm{b}}(S, S)-(+)-\mathbf{3}$ was used for entries 2, 3, 4, 5 while $(R, R)-(-)-\mathbf{3}$ was used for entry $1 .{ }^{\mathrm{c}}$ Isolated yields. ${ }^{\mathrm{d}}$ The ee values of N-acetylamines were determined by HPLC analysis using chiral phase columns (For 4, 5: Chiralcel OD; For 6, 7, 8: Chiralcel OJ). The absolute configurations of N-acetylamines were determined by comparison with the commercially available acetylated amines of known configurations. ${ }^{\mathrm{e}} \mathrm{rt}, 24 \mathrm{~h}$; then $45^{\circ} \mathrm{C}$, 24 h .

Quite recently, we reported ${ }^{3}$ the synthesis and resolution of a novel chiral BINOL-like C_{2}-symmetric bisaniline 2. It contains two aromatic rings, which attach to the cyclopentane ring as a trans arrangement acting as a chiral shielding wall that can restrict the conformational flexibility of the molecule. This novel structural framework is expected to enhance the chiral induction that makes its further application worthwhile. In this paper, we would like to report the first application of optically active bisaniline $\mathbf{2}$ for asymmetric reaction, enantioselective N-acetylation of secondary alkyl amines ${ }^{4}$.

Chiral bisaniline 2 were readily tetraacetylated to afford the corresponding chiral $\mathbf{3}$ by treatment with $\mathrm{Ac}_{2} \mathrm{O}$ under $110^{\circ} \mathrm{C}$ for 6 h in the yield of $62-75 \%^{5}$. Then, chiral 3 was used as an enantioselective N-acetylation reagent to react with a variety of racemic secondary alkyl amines (Scheme 1). At first, we used the optimal reaction conditions for the enantioselective N-acetylation of $\mathbf{1}^{2}$, thus, the reaction was carried out in DMSO under room temperature with the use of 0.25 equivalent of chiral 3 . The chemical yields and enantiomeric excesses of the resultant N -acetylated amines are listed in Table 1. The ee values were up to 21%, which values greatly changed depending on the structures of the starting amines ${ }^{6}$.

In summary, we have shown the first application of optically active bisaniline $\mathbf{2}$ for asymmetric reaction, enantioselective N-acetylation of secondary alkyl amines. Despite the disappointing results in terms of reactivity and selectivity of the reagent $\mathbf{3}$, the optimal reaction conditions of N -acetylation are currently being explored in our lab and experimental results will be reported in due course.

Acknowledgments

This study was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, and the Sasakawa Scientific Research Grant from The Japan Science Society. Jin Song YANG acknowledges a kindly financial support from Toho University, Japan. Prof. Feng Peng WANG for helpful discussion on this work is also gratefully appreciated.

References and Notes

1. C. S. Chen, C. J. Sih Angew. Chem., Int. Ed. Engl. 1989, 28, 695. G. Asensio, C. Andreu, J. A. Marco Tetrahedron Lett. 1991, 32, 4197. E. I. Luis, M. S. Víctor, R. Francisca, G. Vicente Tetrahedron: Asymmetry 1997, 8, 2675.
2. K. Kondo, T. Kurosaki, Y. Murakami Synlett 1998, 725.
3. J. S. Yang, K. Kondo, Y. Murakami Coll. Czech. Chem. Comm. 2000, 65, 549.
4. Quite recently, Fu has reported an effective planar-chiral reagent for enantioselective N-acetylation: Y. Ie, G. C. Fu Chem. Commun. 2000, 119.
5. Spectral data for $(R, R)-(-)-3: \mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$ (colorless prisms, $\mathrm{Et}_{2} \mathrm{O} / n$-hexane). $[\alpha]_{D}^{22}:-103.4\left(c \quad 0.75, \mathrm{CHCl}_{3}\right)$. IR (Nujol): $1705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $1.64(6 \mathrm{H}, \mathrm{s}), 1.67-1.80(2 \mathrm{H}, \mathrm{m}), 1.89-1.97(2 \mathrm{H}, \mathrm{m}), 2.19-2.29(2 \mathrm{H}, \mathrm{m}), 2.36(6 \mathrm{H}, \mathrm{s})$, $3.12-3.20(2 \mathrm{H}, \mathrm{m}), 6.90(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{td}, J=2.0,7.1 \mathrm{~Hz}), 7.37-7.44(4 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 25.3,26.4,27.0,36.8,48.4,127.2,127.4,128.8,129.4$, 137.6, 142.4, 172.7, 172.8. EI-MS $m / z: 420\left(\mathrm{M}^{+}\right), 378,336,293,43$. Anal. Calcd for
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 71.41%; H 6.71\%; N 6.66\%. Found: C 71.29%; H 6.48\%; N 6.61\%. Data for $(S, S)-(+)-3: \mathrm{mp} 111-113{ }^{\circ} \mathrm{C}$ (colorless prisms, $\mathrm{Et}_{2} \mathrm{O} / n$-hexane). $[\alpha]_{D}^{23}: 102.7$ (c 0.78, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 71.41%; $\mathrm{H} 6.71 \%$; $\mathrm{N} 6.66 \%$. Found: $\mathrm{C} 71.41 \%$; H 6.73%; N 6.81%.
6. The recovery yields and ee values of the unreacted starting amines were as follows: 4 (69%, 3% ee); $\mathbf{5}$ ($71 \%, 4 \%$ ee); $\mathbf{6}(72 \%, 3 \%$ ee); 7 ($68 \%, 7 \%$ ee); $\mathbf{8}(64 \%, 1 \%$ ee).

Received June 2, 2000

